Ольга Ведерникова

Эксперт в геопространственных технологиях с 20-летним опытом в ИТ, геоаналитике и Data Science.
Специализируюсь на проектах в транспортe и логистике, телекоммуникационной инфраструктуре, урбанистике, недвижимости и финансах. Работала в Luxoft, Boeing, Ренессанс Капитале и ВТБ. Образование: МИФИ ("Прикладная математика"), Executive MBA в Стокгольмской школе экономики. В 2020 основала Epsilon Metrics - российскую платформу геоаналитики с поддержкой искусственного интеллекта.

24 статей


6 шагов подготовки данных для дата аналитики и машинного обучения

Статья рассказывает о важности автоматизации подготовки и преобразования данных для повышения эффективности машинного обучения. Рассматриваются ключевые этапы и их роль в аналитике.

Построение RAG c большой языковой моделью LLM (Llama 2) и FAISS: подробное руководство

Статья рассказывает, как большие языковые модели (LLM) повышают эффективность поиска с помощью технологии Retrieval-Augmented Generation (RAG). В ней показаны два подхода: программная реализация на Python с Llama 2 и FAISS и no-code решение через платформу Epsilon Workflow.

Сделайте свою большую языковую модель (LLM) специалистом в любой области с помощью Retrieval Augmented Generation (RAG)

Большие языковые модели (LLM) помогают генерировать текст на основе вероятностей, но не могут обновлять свои знания. Технология Retrieval-Augmented Generation (RAG) решает эту проблему, предоставляя доступ к актуальным данным для более точных ответов.

Простое внедрение ИИ, LLM и RAG в компании: руководство и пример

Компании все чаще задумываются о внедрении генеративного искусственного интеллекта (GenAI), но не всегда знают, как эффективно начать этот процесс. В этой статье мы расскажем, как за несколько недель превратить идеи по использованию GenAI в работающие решения, которые помогут автоматизировать процессы и улучшить взаимодействие с клиентами.

Как построить архитектуру аналитики данных и превратить обычную компанию в data-driven

Архитектура данных определяет, как управлять данными на всех этапах — от сбора и преобразования до хранения и использования. Это основа для работы с данными и приложениями искусственного интеллекта. В статье мы рассмотрим основные шаги и принципы, которые помогут создать современную архитектуру данных, обеспечивающую безопасность, доступность и оптимизацию потоков данных.

Что такое конвейеры данных и зачем они вам?

Конвейеры данных автоматизируют сбор и обработку информации, интегрируя данные из различных источников. Статья объясняет, как использовать ETL и ELT схемы, хранилища данных и озера данных для эффективного анализа.

В ритме ритейла: Эпсилон Метрикс на Retail Show 2024

Конференция Retail Show 2024 собрала ведущих экспертов в области ИТ для ритейла, обсуждая новейшие тенденции в геоаналитике и искусственном интеллекте. Узнайте больше о ключевых моментах и впечатлениях от мероприятия в нашей статье.

Практическое применение генеративного ИИ в пространственном анализе данных

В статье рассматривается роль генеративного искусственного интеллекта в преобразовании пространственного анализа данных, демонстрируя его возможности на примере создания интерактивных карт с текстовыми описаниями. Описывается процесс использования генеративного ИИ, от подготовки данных до генерации и визуализации результатов

Где разместить зарядные станции для электромобилей

Электромобили становятся всё более популярными, что требует развития доступной зарядной инфраструктуры, роста количества и размера операторов пунктов зарядки. Статья подчёркивает важность анализа геоданных для определения оптимальных местоположений зарядных станций.