Кейсы

В этой рубрике мы представляем реальные примеры успешных проектов и решений, реализованных нашей компанией.


Где взять данные для AI-агента, если у вас только 1С

В статье показан пример внедрения AI-агента TXT2SQL: пользователь пишет запрос в привычной разговорной форме, а система на основе внутренних БД 1С и документов генерирует ясный и точный ответ. В проекте источниками данных выступают несколько конфигураций 1С, поэтому ключевым этапом стало формирование данных для AI-агентов с учётом особенностей этой платформы. Переход от данных в 1С к AI-ready витрине включал в себя несколько уникальных шагов, которые мы подробно разберём. Вы увидите, чем GenAI-проект полного цикла на платформе 1С отличается от простого «прикручивания» LLM к чат-боту и проследите реальный production-ready процесс — от ETL-конвейера до внедрения AI-агента.

AI-агенты и Agentic Reasoning: Не рассуждай, не хлопочи — AI-агенты рассуждают

За последние несколько лет большие языковые модели (LLM) и мультимодальные модели (LMM) стали основой множества ИИ-приложений. Сегодня быстро развивается новая парадигма — AI-агенты и агентное мышление, которые предлагают ещё более эффективные способы создания ИИ-приложений. Неструктурированные данные — текст, изображения, видео и аудио — становятся важнейшим ресурсом, и AI-агенты уже показывают, как с ними работать проще и быстрее. Эти технологии не просто анализируют данные, а позволяют разрабатывать приложения, которые раньше казались невозможными. В статье мы разбираем, как AI-агенты меняют подход к разработке, как они работают с данными и почему растёт их влияние на автоматизацию.

Извлечение данных: определение, принцип работы и примеры

Извлечение данных — это первый этап в процессе ETL (Extract, Transform, Load), который помогает превратить разрозненные данные из различных источников в ценный ресурс для анализа и ИИ-приложений. Разберёмся, почему извлечение данных играет ключевую роль, как оно работает для различных типов данных, и какие инструменты помогают его автоматизировать.

Мультимодальные RAG и VLM против OCR + LLM: Как откровенно поговорить с вашими PDF?

Представьте, что вы можете просто «поговорить» с документом. Именно это делают ИИ-приложения типа «Talk to your PDF» (или «Chat with your docs») — загружаете PDF или другой документ, задаёте вопросы по его содержимому и получаете ответы. Эта возможность ИИ стала одной из самых востребованных для тех, кто работает с многостраничными документами. Однако есть одно «но»:… Читать далее Мультимодальные RAG и VLM против OCR + LLM: Как откровенно поговорить с вашими PDF?

Serverless-решения для LLM-приложений: 5 шаблонов и примеры

Рассмотрим, как работать с LLM в serverless средах при создании LLM-приложений. На примерах разберём архитектурные шаблоны, такие как последовательная и параллельная обработка промптов, использование кэша и обработка ошибок, которые помогают оптимизировать производительность и снизить затраты на управление LLM-приложениями.

No-code конвейеры помогут внедрить genAI и ML, даже если кажется, что вы пока не готовы

Рассмотрим, как использование no-code конвейеров данных помогает компаниям упростить и ускорить внедрение генеративного искусственного интеллекта (genAI — generative artifitial intelligence) и машинного обучения (ML). Как автоматизировать процессы подготовки, интеграции и анализа данных без необходимости программирования, что делает технологии машинного обучения и ИИ доступными для бизнеса любого масштаба и уровня технической подготовки.

Как построить архитектуру аналитики данных и превратить обычную компанию в data-driven

Архитектура данных определяет, как управлять данными на всех этапах — от сбора и преобразования до хранения и использования. Это основа для работы с данными и приложениями искусственного интеллекта. В статье мы рассмотрим основные шаги и принципы, которые помогут создать современную архитектуру данных, обеспечивающую безопасность, доступность и оптимизацию потоков данных.

Практическое применение генеративного ИИ в пространственном анализе данных

В статье рассматривается роль генеративного искусственного интеллекта в преобразовании пространственного анализа данных, демонстрируя его возможности на примере создания интерактивных карт с текстовыми описаниями. Описывается процесс использования генеративного ИИ, от подготовки данных до генерации и визуализации результатов

Где разместить зарядные станции для электромобилей

Электромобили становятся всё более популярными, что требует развития доступной зарядной инфраструктуры, роста количества и размера операторов пунктов зарядки. Статья подчёркивает важность анализа геоданных для определения оптимальных местоположений зарядных станций.